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Abstract

In this paper, a Baycsian procedure to estimate the 3 parameter normal ogive hodel
and a generalization to a model with multidimensional ability parameters will be discussed. The
procedure is a generalization of a procedure by Albert (1992) for estimating the 2 parameter
normal ogive model. The procedure will support multiple samples from multiple populations
and restrictions on the factor matrix for testing specific hypotheses about the ability structure.
The technique is illustrated using simulated and real data.

Key words: Bayes estimates, Full Information Factor Analysis, Gibbs sampler, item
response theory, Markov chain Monte Carlo, multidimensional item response theory, normal

ogive model.

Introduction

Item response theory (IRT) models are stochastic models for the responses of persons
to items, where the influence of items and persons on the responses are modeled by disjunct
sets of parameters. In the framework of educational and psychological measurement, the person
parameter can usually be labeled ability, and in many instances it suffices to assume that ability
is unidimensional. However, in other instances it may be a priori clear that multiple skills or
abilities are involved in producing the manifest responses, or the dimensionality of the ability
structure might not be clear at all. In these situations, multidimensional IRT models can serve
confirmatory and explorative purposes. The focus of this paper will be di.chotomously scored
items. Multidimensional IRT models for dichotomously scored items were first presented by
Lord and Novick (1968) and McDonald (1967). These authors use a normal ogive to describe
the probability of a correct response. McDonald (1967,1997) developed an estimation proceduré
based on an expression for the association between pairs of items and derived from a polynomial
expansion of the normal ogive. The procedure is implemented in NOHARM (Normal-Ogive
Harmonic Analysis Robust Method, Fraser, 1988). An alternative using all information in
the data, and therefore labeled "Full Information Factor Analysis” was developed by Bock,
Gibbons, and Muraki, (1988). This approach is a generalization of the marginal maximum
likelihood (MML) and Bayes model estimation procedures for unidimensional IRT models

(see, Bock & Aitkin, 1981, Mislevy, 1986), and has been implemented in TESTFACT (Wilson,

'Wood, and Gibbons, 1991). A comparable model using a logistic rather than a normal-ogive

representation has been studied by Reckase (1985, 1997) and Ackerman (1996a and 1996b).

v 4



MCMC estimation MIRT - 3

The aim of the present paper is to present a Bayesian approach to estimating normal
ogive multidimensional IRT models. The method is a generalization of the Bayesian approach
to estimating the two-parameter normal ogive model (2PNO) by Albert (1992). The method will
provide marginal posterior density estimates for any parameter of interest. Besides that these

" estimates can be used to judge the accuracy of normal approximations of the standard error of
MML estimates, the method also has the advantage that restrictions on the dimensionality in the
MML framework emanating from using Gaussian quadrature do not apply here (Bock, Gibbons,

. & Muraki, 1988).

This paper is organized as follows. In the next section the procedure will be developed
for the unidimensional 3-PL normal ogive model (3PNO). In the third section this procedure will
be generalized to (J—multidimensional normal ogive models, both with and without guessing
parameters. The former model will be labeled (Q+2)PNO, the latter (Q+1)PNO. The procedure
will be defined in such a way that generalization to multiple samples from multiple populations
is straightforward. In the fifth section, it will be shown how restrictions can be imposed on the
factor structure and how they can be used to facilitate the interpretation of the model. Then,
in Section 6, two examples will be given, a simulated example to evaluate parameter recovery
and an example using real data to exemplify the approach of using restrictions to produce an
interpretable factor solution. Finally, in the discussion section, some suggestions for further

research will be given.

Bayesian Estimation of the 3PNO

In this paper, a Markov chain Monte Carlo procedure will be used to sample the
posterior distributions of interest, and the needed chains will be constructed using the Gibbs
sampler (Gelfand & Smiths, 1990). To implement the Gibbs sampler, the parameter vector
is divided in a number of components, and each successive component is sampled from its
conditional distribution given sampled values of all other components. This sampling scheme
is repeated until the sampled values produce stable posterior distributions. Albert (1992) applies
Gibbs sampling to estimate the parameters of the well known two-parameter normal ogive
model (Lawley, 1943, 1944, Lord, 1952, 1953a and 1953b). In this section, the procedure
will be generalized to the 3PNO, in the following section, this approach will be generalized
further to a multidimensional framework. In the 3PNO, the probability of a correct response of

a person % on an item j, denoted by Y;; = 1, can be written as

ERICqT cOPY AVALABLE 5
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MCMC estimation MIRT - 4

P(Yy; = 1;0i,05,B;,7;) = 7+ (1 —7,)%1n)

(n;;) +7;(1 = 2(n,;)),

0]

where 7 is called the ’pseudo-guessing parameter’, ® denotes the standard normal cumulative
_ distribution function, and 7;; = «;0; — ﬂj with §; the ability of person %, «;, the discrimination
parameter and 3; the difficulty parameter of the item j, respectively. In (1) the usual expression
for the 3PNO is rewritten to an expression that supports an interpretation of the model to be
used below. In this interpretation, there is a probability ®(;,) that the respondent knows the
item and gives a correct response with probability one, and a probability (1 — ®(r,;)) that the
respondent doeé not know the item and guesses with v; as the probability of a correct response.
So the probability of a correct response is a sum of a term @(7,;) and a term 7y, (1 — ®(n;;)). In
line with this interpretation, it will prove convenient to introduce a vector of binary variables
W.; such that

Wi, = (2)

1 if person ¢ knows the correct answer to item j
0 if person ¢ doesn’t know the correct answer to item j.

So if Wi; = 0, person 7 will guess the response to item j, if W;; = 1, person ¢ will know the
right answer and will give a correct response. Consequently the conditional probability of W;
given Y;; is given by '

P(W; =1 'Yij = 1,771‘]',’)’]') X ‘I’(nij)

P(Wij =0 !Yij = 1,771‘,',’)’]') X ’Yj(l - (I)(nij))

P(W; =1lY;; =0,n,,,7,) =0

(3)
P(Wij =0 'Yij = 0,771‘]',’7]') =1

To implement the Gibbs sampler the data y, responses of n persons to k items, will be
augmented with latent data W = (W, ..., Wy, )T. Further, following Albert (1992) the data are
also augmented with latent data Z = (Z;, ..., Zx)T, where the variables Z;; are independent
and noﬁa]ly distributed with mean 7,; and a standard deviation equal to one. These variables

are related to W by Z;; > 0if W;; = 1and Z;; < 0if W,; = 0. This can be written as

P(Zi; |Wajimi;) o« ¢(Zijimig0 1) (1(Zi5 > 0)I(Wi; = 1) + I(Zi; < 0)I(Wi; = 0)) (4)

V! 6



MCMC estimatjon MIRT - 5
where qﬁ(Z,-j;nij, 1) stands for the normal density with mean Mi; and standard deviation one
evaluated at Zij. It is assumed that 4, js standard normally distributed, the item parameters
£.¢ = (;8;)7, are given a prior p(&) = H;;l I{e; > 0) to insure that the discrimination
Parameters are positive, and the pseudo-guessing Parameter -y, has the conjugate noninformative

prior Beta(1, 1),

£,60,7 and W given by

p(£,6,2,Wiy) = p(Z,WIy;6,7,9,)p(9)p(§)p(7)

I
Q
=

n k
{(H P(Zij ’I/Vij777ij )P(Wij Iyi:v 771']':’7,')} (5)

k
$(6;0,1) (HI (e > 0)> qp(vj)
q= Jj=
where p(W,; ly,-j, M:5,7;) is given by (3) and p(Z;; IW,-]-, 7:;) follows from (5).
Although the distribution given by (5) has an intractable form, the fully conditional
distributions of Z,6,¢ and 7 are each tractable and easy to simulate from. A draw from the fu]]

conditional distribution can be obtained in fjve steps.

Step 1 Draw from the conditional distribution of Zi; given all other variables. Using (5), the
distribution of Z;; conditional on W, 0and ¢ is given by

N(n,-j,l) truncated at the left by 0 if W, =1

Z;1W, 8, $y dist. { N(n;;,1) truncated ar th¢ rightby 0 if W; = 0.

Zij ~ f3. on a;,with 8, as a regression coefficient with a normal prior with parameters y =

ando = 1. Therefor, the posterior of ¢, is normal, that js,

(6)

5 )
0; is distributed N(M ! >,

1/v+1/02’ (1/v + 1/0?)

where 6, = 2 05(Zi; + B;)/ 3, o2 and variance v=1/ 3. a2,

Step 3 Draw from the conditional distribution of &; given 6 and &. The variables &; can be

viewed as coefficients of the regression of Z; =(zy,,.., Zn)TonX = (6 — 1), with —1 the

Q 7
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n dimensional column vecfor with elements -1. Therefore,
£€;16,Z,,y isdistributed N(§;, (X"X) " )I(ey > 0), (7

where éj = (XTX)"'XTZ,.
Step 4 Draw from the distribution of W conditional on all other variables given by (3).

Step 5 Sample from the conditional distribution of ;. Let t; be defined as t; = i I(Wi; = 0)
, that is, ¢; is the number of persons who do not know the correct answer to itelr?llj and guess
the response. The probability of a correct response of person i on item j given Wi; =0
is P(y; = 1 |VV,-J- = 0) = v, . The number of correct responses obtained by guessing, say,
8; = i Yij, has a binomial distribution, Bin(t;, v;). With the noninformative conjugate

il’w,'j=0

Beta prior, the posterior distribution of v, 18
v; W,y ~ Beta(s; +1,¢; — s; + 1). (8)

The procedure boils down to generating a number of parameter sequences iteratively
using these five steps. Convergence of the procedure can be evaluated by comparing the
between and within sequences variance (see, for instance, Gelman, Carlin, Stearn & Hall,
1995). Starting points of the sequences can be provided by the Bayes modal estimates of Bilog
(Zimowski, Muraki, Mislevy, & Bock, 1996).

Multidimensional normal ogive model

In a multidimensional normal ogive model with a guessing parameter (Q+2)PNO, the

probability of a correct response, Y; = 1, on an item j is given by
P(Y; =1 loi)£j> 71') =7;+ (1- 71')(1)(771'1'), 9)

where 6; is a vector of Q) ability parameters 64, ¢ = 1,...,Q, &; = (a1, .., &g, .., Qjo. 3,7
is the vector of parameters of item 7, and Ny = ZqQ:l @jqbg: — B;. Further, it is assumed that
all ability parameters ;, i = 1, ..., n, are independent and have identical multivariate normal -
distributions with mean g and covariance matrix .

To identify the model, restrictions have to be imposed on the parameters. One

approach, which, for instance, is used in the exploratory option of NOHARM (Fraser, 1988), is
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setting the mean and the covariance matrix equal to zero and the identity matrix, respectively,
and introducing the constraints aj; = 0, forj = 1,..,Q@ —1landg = j 4+ 1,...,Q. An
alternative approach is considering the parameters of ability distribution as unknown estimands,
and to identify the model by setting ) item parameters §3; equal to zero and, for j = 1,...,Q
and ¢ = j + 1,.., (), imposing the restrictions a;q = 1,if j = ¢, and a;j, = 0, if j # q.
Below it will be shown that these and the restrictions of the exploratory option of NOHARM
are equivalent. The reason for the latter identification is that it will be easier to generalize the
estimation procedure to a multiple group situation, where additional ability distributions are
considered, which are labeled with unique means and covariance matrices. But to keep the
presentation simple, it will first be assumed that all persons are associated with an identical
ability distribution; the generalization will be returned to later, together with a generalization to
incomplete test administration designs, where different persons respond to different items.
The procedure to be presented will be a generalization of the above procedure. The
definition of the variables, W = (W, ..., Wp;) and Z = (2, ..., Z,;) is as above, but with
an alternative definition of 7;;. It is assumed that the ability of person n, 8, is Q-variate
normally distributed with mean p and variance %, that is, 8,, «~ N(u, X,). Further, the prior
for the item parameters £ is given by 7(§) = H;?:l HqQ=1 I(aj, > 0), that is, it is assumed
that the probability of a correct response is positively related to all latent abilities involved.
As above, the pseudo guessing parameter y; will have a Beta prior. The joint posterior of

g: 0: Z,W,‘)’,ﬂ-, 20 is given by

p(£,0,2Z,W,v,1,Ey) = p(Z,W|y;§~,0,)p(0| 1, Z,)p(1|Z6 )p(Ze)p(&)p(7Y)

I
i :]:

k .
I:[ (ZIJ IM ij ,771,) (VVW |yij ;nij:’Yj)p(ei |2, Zy)
Y

( 0 )p(Ze)p(€)p(7)

where p(Z;; |W;; ;m;;) and p(Wi; s ;m;5,7;) are as defined in (4) and (5), with the proper
substitution of 7;;. Finally, p(1£|Zs) and p(X) will be normal and inverse Wishart,
respectively.

Again, the procedure consists of simulating from fully conditional posteriors, in this
case, the fully posterior distributions of £,0,Z, W, ~, u, 3,. Therefore, the procedure consists

of seven steps:

(1) Draw Xy conditional on 8. BEST C@PY AVAELABLE

(2) Draw p conditional on ¥4 and 6.

ERIC 9
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(3) Draw W conditional on 8, £,y and Y.
(4) Draw Z conditional on W, 8, and £.
(5) Draw @ conditional on Z, £, 34, and p.
(6) Draw £ conditional on Z and 6.

(7) Draw ~ conditional on W and Y.

In this section, it will be assumed that there are appropriate initial estimates of 6,£ and
v, how these initial estimates might be obtained will be discussed later. With this assumption,

the seven steps can be executed in the following order.

Step 1 The conjugate prior distribution for (g, X,) is a product of a normal and an inverse-
Wishart distribution (see, for instance, Box & Tiao, 1973). Let Ay be the scale matrix and let
vg be the degrees of freedom for the prior of 34. Further, let £44 be the prior mean and let <o be
the ﬁumber of prior measurements on the X4 scale. The posterior is now also inverse-Wishart

distributed with parameters

Kon n_n
Ky = no+nl‘l'0 + no+n0
Un = VUp+n
Kn = Ko+n

Aw = Ao+ S+ 222 (0 — 1o)(B— o),

Ko+n

where S is a matrix with elements S,,q‘= S (8ip — 0,)(8iq — 8,) and 8, and 8, are the means
1

1=

_of the ability parameters of dimension p and g, respectively. The choice of a value for p,
will be returned to below. With respect to the choice of xg, v and A,, a noninformative prior
distribution is obtained if kg — 0,up — —1 and |A,| — 0. This results in the multivariate

version of Jeffreys’ prior density. The corresponding posterior distribution can be written as

3410 ~ Inverse-Wishart,_,(S)
_ (10)
H'EB,Y ~ N(G,Eg/n)

So using Jeffreys’ prior £y can be drawn from the Inverse-Wishart distribution.

Step 2 Draw p from its full conditional distribution. Using Jeffreys’ prior results in u | g,y ~
N(8,Z,/n).

Step 3 Sampling W from its full conditional distribution proceeds as in Step 4 of the previous

section, with the proper substitution of 7;;.
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Step 4 Sampling Z from its full conditional distribution proceeds as in Step 1 of the previous

section, with the proper substitution of 7,;.

Step 5 To draw from the conditional distribution of @, an orthogonal standardized ability ¢ is
defined. So the elements of 87 = (67, ... ) have independent standard normal distributions.
Let L be the Cholesky decomposition of 2, that is, £y = LL”. Define the orthogonal ability '

vector for person i, 87 = L™'(8;— ). Now 7,; can be written as

Q
Ty = Z(aiqaqj)_ﬁj
q=1
Q
o

Q
Z(aiq Z Lngbg; + 1g) — B;

1 h=1

and in matrix notation as
= ALL™'(8;—p+p) — B = A(LO + u) - B,

with n; and 3 vectors of length k, 8;, 67 and p vectors of length @ and A a k x Q matrix with

elements oj,. The ability parameters 85 has a full posterior density given by

p(0:1€,Z,y, W) x ¢(67;0,1 ﬁff’ Zij3Mij» 1)
j=1
This can be written as
Z,+8-Apu=BO+¢;, -
where B = AL and ¢; is a vectors element.s €:5, which are iid N (0, 1).1It then follows that
6° is distributed N ((1 + oIR8, (14 2-1)-1) ,

with @ the common least squares estimate 6 = (B"B)"'BT(Z; + B—Ap) and & =
(BTB)~!. Now 6; can be obtained by the transformation LO}+ =80,

Step 6 Conditional on Z and 6, the posterior distributions of £, ..., §, are independent with

11
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the density of §; given by

Q
p(€;|W,0,Z,y) x H¢ ,J,Zajqeiq - B 1) [[1(eyy > 0
i=1 =1 g=1
DefineX = (6., ...,0,,...,0q, —1) with 8, = (614, ...0ne)T and —1is an nn dimensional column

vector with elements -1. Conditional on 8, Z; = (Z,;, ..., Z,;)T satisfies the linear model
Zj = ng + Ej,

where €; = (€1, ..., €45, .-, €05)T and the €;; are iid N(0, 1). It then follows that
Q
E 18,2,y is distributed N( ,(XTX)~ HI (ajq > 0),
q=1

where £; = (XTX)™'X7TZ;.

Step 7 Sampling 7; from its full conditional distribution proceeds as in Step 5 of the previous

section.

As above, these steps can be used to iteratively generate a number of parameter
sequences and convergence can bé evaluated by comparing the between and within sequences
variance. Finding starting values for the procedure may be obtained from NOHARM or
TESTFACT, but an alternative approach will be sketched in the next section.

Above, it was already mentioned that there are several approaches to identify the
model. Consider the model with ability parameters 6; and identifying restrictions u=0,
ajo = 1,if j = g, and ayq = 0,ifj # g forj=1,..,Qandqg = j+1,..,Q, onone
hand, and the model With orthogonal ability parameters 87 and identifying restrictions n =0,
Y9 =1, and aj,=0,forj=1,..,Q—-1landg=j+1,..,Q, on the other hand. Let A and
A° be the matrices of factor loadings for the former and latter parameterization, respectively.
Analogously to step 5, 6; can be transformed to 07 by 87 = L='0;, where L is the Cholesky
decomposition of Xy. Because L is lower triangularand A9; = ALG; = A°8?, the restrictions
ajo=1,if j=g,and a;, = 0,if j # ¢, forj = 1, ..., Q and qg=7J+1,...,0, are transformed
into restrictions aj, =0,forj =1,.,Q—-1andg = j + 1, ..,@ . On the other hand,
defining the lower triangular matrix F as the first Q rows of A° and applying 8; = F6?, results

inZp_FT'F-1and A = A°F~!, which in turn produces restrictions ajo = 1,if j = q, and
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Qjq = 0,1fj # g, forj = 1, wwQandg=j+1, .., Q. So the two parameterizations of the
model are easily interchanged.

As was already mentioned above, the procedure easily generalizes to the case of
multiple groups and incomplete designs. In the case of multiple groups, the mean and the
covariance matrix of the ability distribution of one of the groups can be set equal to zero
and the identity matrix, respectively. So for this group the first two steps are not performed,
these steps are only performed to generate means and covariance matrices for the remaining
groups. Restricting the mean and the covariance of one of the ability distributions suffices for
fixing the location and the scale of the latent continuum. However, this is not sufficient to
identify the model, because the model probabilities (1) are left unaltered under a permutation
of the ability dimensions. Therefore, additional constraints a;, = 0,for j = 1,..,Q —1and
g=7+1,..,Q are needed to completely identify the model. Steps 3 and 4 are performed per
item, so generalization to multiple groups and incomplete designs only entails that.the variables
Wi; and Z,; are performed in the cases where person ¢ responded to item ;. Step 5 is performed
per person, so here both the group to which the person belongs and the items made should be
taken into account. Finally, the steps 6 and 7 for generating item parémeters should take into

account the persons actually confronted with the items.

Subscale Factor Analysis

In the previous section it was argued that the model can be identified by setting a mean
and a covariance matrix equal to zero and the identity matrix, respectively, and introducing the
constraints o, = 0,forj =1, ..., Q-landg=j+1,..., Q. These are the constraints also used
in the exploratory option of NOHARM (Fraser, 1988). In this approach, the model is identified
by assuming that the responses on the first jtem are uniquely determined by the first ability
dimension, the responses on the second items are uniquely determined by a mixture of the first
and the second ability dimension, and so forth. In general, these identification restriction will be
of little helpin providing an interpretation for the ability dimensions. Therefore, ina exploratory
factor analysis, the factor solution is usually visually or analytically rotated. Often, the rotation
scheme is devised to approximate Thurstone’s simple structure criterium (Thurstone, 1947),
where the factor loadings are split into two groups, the elements of the one tending to zero

-and the elements of the other toward unity. The approach suggested in this section has much
in common with this approach:'the idea is to identify the dimensions with subscales of items

loading on one dimension only. The idea is to either identify these S < @ subscales on a priori

siRCopy avanage 13
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grounds, or to identify these subscales using an itefative search based on fitting a unidimensional
IRT model by discarding items from the scale. In the latter case, there are two reasons for
choosing the Rasch model as the unidimensional IRT model. Firstly, the theory evaluation of
fit to the Rasch model is well founded and the asymptotic distributions of the many fit statistics
are well known (Andersen, 1973, Martin Lof, 1973, 1974, Kelderman, 1984, 1989, Molenaar,
1983, Glas, 1988, Glas & Verhelst, 1989, 1995). However, this argument is not completely
overwhelming, because procedures for evaluation of model fit are also available in the general
MML framework (Yen, 1981, 1984, Mislevy & Bock, 1990, Reiser, 1996, Glas, 1998) and
the Vframework of non-parametric IRT (Rosenbaum, 1984, Holland & Rosenbaum, 1986, Stout,
1987, 1990 and Junker, 1991). A second and more important reason relates to the intuitive

- concept of a measurement scale: acontinuum where the order of the outcomes of a measurement
does not depend on the objects positions on the scale. Translated to a test with dichtomous items:
the probabilities of a correct response on items referring to a scale is independent of the position
on the scale. This intuitive requirement is formalized by Rasch (1967) and leads to the Rasch
model (Fischer, 1995).

These considerations lead to the following heuristic:

(1) Setcounter s =1

(2) Estimate the parameters of the items in the target set;

(3) Compute fit statistics and remove poorly fitting items from the target set to the set "removed
items™;

(4) If the overall model fit is unacceptable, goto 2;

(5) If s = S then stop else "removed items” becomes the target set, s = s + 1 and goto 2.

In the first iteration of the selection process (s = 1), the target distribution can
be set to the complete test, and the inner loop (steps (2)-(4)) is repeated until an acceptable
unidimensional subscale is found. In the next iteration (s = 2), the nest subscale is selected
from the remaining items, and so forth, until s = 5. Detailing this procedure further, the item
parameters estimates of step (2) can, for instance, be computed using conditional maximum
likelihood (see, for instance, Molenaar, 1995), which has the advantage that these estimates
do not depend on an assumption with respect to the ability distribution. These estimates can
be computed using RSP (Glas & Ellis, 1993), which program also computes the so-called R,
and Ry statistics (G]as, 1988) that can be used in step (3) and (4). The R;-test can be used for
evaluation of the form of the ICC’s and the R»-test for evaluation of local independence.

After identification of S sets of scaled items, there will usually be a set of remaining

14
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items that may load an all ability dimensions. Of course, the number of items in this set depends
on the size of the critical regions used in step (3) and (4). Next, restrictions will be imposed on
the matrix of factor loadings A to reflect the structurg: of the subscales found, that is, if item j
belongs to subscale g, aj; = 1, and ajo = 0,forq’ = 1,...,Q, ¢ # ¢. Finally the remaining
dimensions ¢ = S + 1, ..., @ are identified using ajq = l,and oy = 0, for some item 7' not

belonging to a subscale,and ¢ =1, ...,Q, ¢ #q.

Examples

In this section, two studies of the performance of the MCMC method will be presented,
one for the case of the 3PNO and one for the case of the (3+2)PNO. For the first study, data
were simulated using the 3PNO parameter values given in Table 1. These parameters are a
subset of the items parameters of a real, and therefore realistic data set (ACT, 1997). Using
these parameters, ability parameters for n = 1000 simulees were drawn from a standard normal
ability distribution and for every simulee a response patterns was generated using the 3PNO.
Next, the items parameters were estimated using the MCMC procedure described above and
Bilog-MG. In both procedures the same Beta(a, b} prior on 7 was used. The values for a and
b were set equal to 20 * Y, + 1 and 20 * (1 —'7,.,,.) + 1, respectively, the values 7, are
listed in Table 1. Further, in the Bilog analysis a log normal (0,0.5) prior on Was used. The
MCMC procedure had a run length of 30000 iterations. The starting values used in the MCMC
procedure were, &; = 1, 8; = 0, V; = ; 4ry forallitems 4, and 8; = 0O for all persons j. In areal
estimation situation those starting values can be improved by the use of, for example, Bilog-
MG estimated parameter values. From examining thé plots of sampled parameter values, it was
concluded that a burn-in period of 1000 iterations was sufficient. These first 1000 iterations

were discarded.

Insert Table 1 about here

The mean of the generated posterior distribution and posterior standard deviation of
the parameters issued from the MCMC procedure are given in Table 2. In Table 3, the MML
estimated parameter values and their standard errors issued from Bilog-MG are given. The /3
parameters in Table 3 are transformed 8 = of,,,,, because in Bilog-MG the parameterization
®(a(6 — B)) is used. Comparing the Tables 1, 2 and 3, it can be seen that parameter recovery

of the MCMC and Bilog-MG procedures are comparable.
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Insert Table 2 and Table 3 about here

procedure, Therefore, 4 Beta(q, b) prior with ¢ = 1000*7""5 +1andb = 1000« (1- Yerue) + 1
Was used. The trye Parameter valyeg Ytrue are listed in Table 4, Further, the Starting values for
the item Parameters were Qi = 1/i for ; € @ and Qg = 1/Q otherwise, and B; = 0, and

Yi =Y tue-The starting values for the person Parameters were 0iq = 0.

Insert Table 4 to 8 about here
T2 20ut here _
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Table 1
True item parameter values

ITEM o B p~
0.642 -1.619 0.19
0.806 -1.533 0.15
0.956 -1.292 0.11
0972 -1.061 0.14
1045 -0.245 037
0.834 -0.264 0.14
0614 0023 0.17
0.796 0.213 0.10
1171 -0.669 0.19
1.514 0480 0.31

= 2R I~ WV T~ FURY N R
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Table 2
Recovery of 3PNO parameters by MCMC
ITEM o [¢] y ala) o(B) a(y) .

0.564 -1.607 0.220 0.111 0.114 0.087
0.818 -1.500 0.187 0.125 0.119 0.081
0.928 -1.185 0.161 0.142 0.112 0.079
0.826 -0.829 0.173 0.125 0.111 0.080
0.927 -0399 0325 0202 0.166 0.079
0.975 -0.369 0.113 0.130 0.095 0.049
0.629 0.038 0.214 0.151 0.200 0.082
1.374 0.682 0221 0444 0332 0.048
1.093 -0.691 0.160 0.173 0.107 0.061
1.027  0.273 0.279 0234 0.198 0.057

SO0 0drUn AW -
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Table 3
Recovery of 3PNO parameters by BILOG-MG
ITEM 4 B Y __ale) o(f) o(y)

0.653 -1.736 0.191 0.113 0.165 0088
0.865 -1.600 0.150 0.125 . 0.161 0.080
0919 -1.249 0.119 0.122 0.143 0074
0.809 -0.869 0.145 0.108 0.121 0.077
0879 -0445 0311 0.152 0172 0082
0930 -0416 0.084 0.116 0.099 (047
0.582° 0024 0.195 0.106 0088 03]
1.1390499 0.199 0279 0.150 0.049
1029 -0.730 0.131 0.135 0.140 0.06]
0942 0203 0.267 0.209 0.150 0.063
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Table 4
True item parameters (3+2)PNO

ITEM: Qg (8] Qg ﬁ Y
1.000  .000 000 000 0.19

000 1.000 000 000 0.15

000 000 1.000 000 0.11
1.000  .000 000 500 0.14
1.000  .000 .000 1.000 0.37
1.000  .000 000 -1.000 0.14
1.000  .000 000 -1.000 0.17
1.000  .000 .000 500 0.10
1.000  .000 000 1.000 0.19
1.000  .000 000 -1.000 0.31
11 1000 000 000 -3 000 0.20
12 000 1.000 000 500 0.20
13 000 1.000 000 250 0.20
14 000 1.000 .000 -250 0.20
15 000 1.000 000 -500 0.20
16 000 1.000 000 500 0.20
17 000 1.000 .000 250 0.20
18 000 1.000 000 -250 0.20
19 000 1.000 000 -500 0.20
20 000 000 1.000 000 0.20
21 000 .000 1.000 000 0.20
22 000 .000 1.000 1 000 0.20
23 000 .000 1000 000 0.20
24 000  .000 1.000 000 0.20
25 000 000 1.000 | 000 0.20
26 200 800 000 000 0.20
27 2200 200 600 1.000 0.20
28 800 400 200 -1.000 0.20

SOOVRU AW
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Table 5
Recovery of 3PNO parameters by MCMC procedure with prior on &

ITEM q s a3 B Y ola) ola) oles) o(f) a(y)
1.148 0.000 0.000 0.023 0.188 0.109 0.059 0.012
0.138 0.927 0.000 -0.011 0.150 0.050 0074 0.049 0.011

-0.027 0.046 1.007 0.046 0.111 0.053 0.051 0.090 0.050. 0.010
0919 0.034 0.046 0504 0.144 0.093 0.027 0.035 0.068 0.011
0.854 0.088 0.110 0923 0.378 0.162 0.061 0.072 0.165 0.015
0.881 0.048 0.029 -0.923 0.142 0.079 '0.034_ 0.025 0.055 0.011
1.061 0.040 0.062 -1.072 0.172 0.098 0.032 0.043 0.067 0.012
0.989 0.066 0.028 0463 0.105 0.098 0.042 0.024 0.066 0.010
1272 0.075 0.129 1.258 0.190 0213 0.053 0.074 0.197 0.011
0.982 0.031 0.057 -1.067 0313 0.110 0.027 0.042 0.073 0.015
0.977 0.047 0.102 -1.139 0.201 0.093 0.036 0.055 0.068 0.013

. 0.034 1.083 0.132 0.652 0202 0029 0.109 0.064 0.086° 0.012

13 0.040 1.015 0.102 0294 0.202 0.032 0.096 0.055 0.066 0.013

14 0.043 1.034 0.035 -0270 0.203 0.033 0.088 0.029 0.051 0.013

15 0.078 0.943 0.050 -0.477 0201 0.045 0.080 0.037 0.051 0.013

16 0.094 1.088 0.130 0.556 0.203 0.053 0.114 0.062 0.086 0.012

17 0.038 1.089 0.180 0334 0205 0.031 0.106 0.065 0.073 0.013

18 - 0.061 0984 0.076 -0.226 0.203 0.041 0.081 0.047 0.052 0.013

19 0.035 1.020 0.028 -0.459 0.202 0.028 0.085 0.024 0.051 0.013

20 0.062 0.102 1.025 1.041 0206 0047 0.062 0.141 0.139 0.013

21 0.078 0.054 1330 0.039 0.203 0.051 0.041 0.143 0.068 0.013

22 0.039 0.062 1.135 1.146 0.212 0.035 0.048 0.209 0.208 0.014

23 0.056 0.086 1.207 1.221 0.209 0.046 0.059 0.207 0.203- 0.013

24 0.105 0.040 1.032 0.009 0.204 0.053 0.032 0.102 0.058 0.013

25 0.070 0.061 1.356 1355 0.213 0.055 0.049 0.286. 0.276 0.013

26 0.253 0.782 0.040 -0.015 0.202 0.054 0071 0.031 0.051 0.013

27 0.096 0.182 0.607 1.069 0200 0057 0.068 0.089 0.102 0.012

28 0.716 0.391 0.201 -0.933 0.201 0.069 0.057 0.056 0.053 0.013

P— VO NO LA W —

24




MCMC estimation MIRT . 23

2

3 . . .

4 0.042  0.506 0.144 0.100 0.064 0.067 0.068 0.01]
5 0.890 0.104 0.056 0.956 0.380 0.186 0.095 0.098 0.182 0.015
6

7
8

0.896 0.064 -0.093 .0.930 0.142 0,084 0.062 0.064 0.054 0,011

LO71  0.043 -0.017 -1.071 0.172 0.105" 0.070 0.073 0.068 0.012

0991  0.103 -0.098  0.465 0.105 0.105 0.065 0.067 0.064 0.010
9 L1310 0.104 0.066 1.287 0.190 0.238 0.096 0.099 0.210 0.012
10 1020 -0.p10 -0.035 -1.079 0.313 0.119 0.072  0.077 0.074 0.015
11 0.985 0.052 0.046 _1.138 0.201 0.098 0.069 0.072 0.068 0.012
12 -0.182 L137  0.092 0.673 0.204 0.082 0.134 0.080 0.099 0.012
13 -0.130 | 036  0.070 0.294 0.202 0.069 0. 00 0.071 0.066 0.012
14 -0.124 059 -0.059 -0.271 0.202 0.067 0.095 0.07¢ 0.052 0013
15 -0.044  0.967 -0.009 -0.474 0.202  0.062 0.084 0.066 0.050 . 0.013
16 -0.047 L1113 0.006 0.552  0.203 0074 0.129 0.078 0.084 0.012
17 -0.156 LIIr  0.15 0.333 0.205 0.073 0.119 0.078 0.073 0.013
18 -0.076 1018 0.034 .0.224 0.203  0.064 0.092  0.069 0.053 0.013
19 -0.145 058 -0.087 -0.458 0.203 0.069 0.095 0.071 0.052 0.013
20 0.024 0,052 1.030  1.042 0.206 0.080 0.084 o 151 0.144 0.013
21 0.082 -0.018 1.341  0.037 0.203 0,079 0.081 0.154 0.069 0.013
22 -0.052  -0.04] L139 1137 0.211 0.083 0.086 0.166 0.159 0.012
23" .0.004 0.007 1226 1.208 0.209 0.094 0.099 0.204. 0.198 0.013
24 0.125 -0.037  1.038 0.010 0.204 0.067 0.069 0.109 0.059 0.013
25 0.016 -0.062 1320 1310 0.212 0,098 0.102 0,193 0.183 0012
26 0.159 0.822 -0.033 0,014 0.202  0.061 0.077  0.064 0.051 0013
27 0.066 0.166 0.599 1062 0.200 0.071 0.074 0.091 0.104 0012
28 0.692 0.433 0.159 . 0.201 0.075 0.066 0.064 0.053 0013
i Standard CITor covariance
0.975 0.056
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Table 7
NOHARM estimates (3+2)PNO
ITEM: o Qs Qs i)
1 1.000 . 0.000 0.000 -0.038
2 0.000 1.000 0.000 0.014
3 0.000 0.000 1.000 -0.042
4 0.686 0.007 -0.014 -0.480
5 0.577 0.075 -0.006 -0.801
6 0.671 0.042 -0.056 0.922
7 0.783 0.015 0.007 1.049
8 0.734 0.064 -0.081 -0.436
9 0.958 0.021 0.130 -1.230
10 0.686 -0.040 0.036 1.025
11 0.765 0.010 0.081 1.143
12 -0.117 1.128 0.113 -0.634
13 -0.073 1.068 0.023 -0.284
14 -0.114 1.070 -0.061 0.280
15 -0.042 0978 -0.032 0478
16 .-0.037 1.108 0.066 -0.526
17 -0.096 1.082 0.125 -0.297
18 -0.069 1.033 0.032 0.237
19 -0.107 1.055 -0.085 0.463
20 0.032 0.019 0.956 -0.962
21 0.072 -0.070 1.293 -0.020
22 -0.040 -0.056 0922 -0.942
23 -0.033 0.020 1.061 -1.066
24 0.098 -0.062 0.968 0.007
25 0.014 -0.024 1.022 -1.043
26 0.127 0.818 -0.019 0.024
27 0.065 0.161 0.645 -1.081
28 0.498 038 0.195 0.918
Covariance
1.638
0.062 0.886
-0.070 0.042 0.995

24



MCMC estimation MIRT - 25

Table 8
TESTFACT estimates (3+2)PNO
ITEM o Q2 Qs <]

1.000 0.000 0.000 0.013
0.000 1.000 0.000 -0.013
0.000 0.000 1.000 0.046
0.782 -0.004 -0.041 0.467
0.678 0.082 0.022 0.809
0.760 0.029 -0.083 -0.928
0.883 -0.005 -0.021 -1.051
0.840 0.071 -0.106 0.429
1.035 0.033 0.073 1.158
0.880 -0.060 -0.027 -1.086
0.818 -0.005 0.042 -1.116
-0.181 1203 0097 0.651
-0.131 1.084 0.040 0.283
-0.132 1.099 -0.069 -0.271
-0.066 1.014 -0.010 -0.470
-0.061 1.146 0.112 0.529
-0.156 1.130 0.142 0.307
-0.085 1.024 0.023 -0.225
-0.158 1.097 -0.090 -0.455
10.037 0.063 1.008 0.991
0.095 -0.032 1251 0.022
-0.033 -0.069 1.047 1.011
0.004 0016 1.031 1.035
0.135 -0.053 0972 -0.004
0.046 -0.061 1.060 1.066
0.109 0.836 -0.041 -0.025
0.076 0.142 0.587 1.039
28 0.572 0.409 0.155 -0.924

ROD DR DN RN DN D) = = e e ot ol b b e
N G R ORS00 a0 RO~ YRINN A WLWN =

Covariance
1.175
0.081 0.754

-0.032 0.037 0.890
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